# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("plotROC", quietly = TRUE)) {
install.packages("plotROC")
}
if (!requireNamespace("survivalROC", quietly = TRUE)) {
install.packages("survivalROC")
}
if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
if (!requireNamespace("grid", quietly = TRUE)) {
install.packages("grid")
}
# 加载包
library(data.table)
library(jsonlite)
library(plotROC)
library(survivalROC)
library(ggplot2)
library(grid)时间依赖 ROC
注记
Hiplot 网站
本页面为 Hiplot Time ROC 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
生存分析中受试者操作特征(ROC)与时间记录分析。
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;plotROC;survivalROC;ggplot2;grid
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-18
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
plotROC * 2.3.3 2025-08-25 [1] RSPM
survivalROC * 1.0.3.1 2022-12-05 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
- <表1>:(数字)生存数据(即生存,风险)。
- <表2>:(数字)时间数据。
# 加载数据
data1 <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/time-roc/data.json")$exampleData$textarea[[1]])
data1 <- as.data.frame(data1)
data2 <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/time-roc/data.json")$exampleData$textarea[[2]])
data2 <- as.data.frame(data2)
# 整理数据格式
surv_table <- data1
colnames(surv_table) <- c("surv", "cens", "risk")
mtime <- as.data.frame(data2)[, 1]
sroc <- lapply(mtime, function(t) {
stroc <- survivalROC(
Stime = surv_table$surv,
status = surv_table$cens,
marker = surv_table$risk,
predict.time = t,
method = "KM"
)
data.frame(
TPF = stroc[["TP"]],
FPF = stroc[["FP"]],
cut = stroc[["cut.values"]],
time = rep(
stroc[["predict.time"]],
length(stroc[["TP"]])
),
AUC = rep(
stroc$AUC,
length(stroc$FP)
)
)
})
mroc <- do.call(rbind, sroc)
mroc$time <- factor(mroc$time)
# 查看数据
head(data1) surv cens risk
1 11.126027 0 0.19205450
2 9.794521 0 0.47734974
3 13.690411 0 0.04605343
4 10.068493 0 0.29717146
5 3.317808 0 0.18144610
6 12.312329 0 0.62681895
head(data2) times
1 2
2 4
3 6
4 8
5 10
可视化
# 时间依赖 ROC
col <- c("#E64B35FF","#4DBBD5FF","#00A087FF","#3C5488FF","#F39B7FFF")
p <- ggplot(mroc, aes(x = FPF, y = TPF, label = cut, color = time)) +
plotROC::geom_roc(labels = FALSE, stat = "identity", n.cuts = 0) +
geom_abline(slope = 1, intercept = 0, color = "red", linetype = 2) +
labs(title = "ROC Dependence Time", x = "False positive rate",
y = "True positive rate",
color = paste("Time", "(", "Year", ")")) +
theme_bw() +
theme(text = element_text(family = "Arial"),
plot.title = element_text(size = 12, hjust = 0.5),
axis.title = element_text(size = 10),
legend.position = "right",
legend.direction = "vertical",
legend.title = element_text(size = 10),
legend.text = element_text(size = 10)) +
scale_color_manual(values = col)
auc <- levels(factor(mroc$AUC))
for (i in 1:length(auc)) {
p <- p + annotate("text",
x = 0.75,
y = 0.05 + 0.05 * i, ## 注释text的位置
col = col[i],
label = paste(
paste(paste(mtime[i], "Year", sep = " "), " = "),
round(as.numeric(auc[i]), 2)
)
)
}
p
