# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("treemap", quietly = TRUE)) {
install.packages("treemap")
}
# 加载包
library(data.table)
library(jsonlite)
library(treemap)树型图
注记
Hiplot 网站
本页面为 Hiplot Treemap 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
树形图是一种用图形形式来表示层次结构的树形结构图。
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;treemap
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-28
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
treemap * 2.4-4 2023-05-25 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
载入数据为不同分组及其数据。
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/treemap/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# 查看数据
head(data) group value
1 Group1 13
2 Group2 34
3 Group3 21
4 Group4 43
可视化
# 树型图
treemap(data, index = colnames(data)[1], vSize = colnames(data)[2],
vColor = colnames(data)[1], type = "index", title = "",
algorithm = "pivotSize", sortID = colnames(data)[1], border.lwds = 1,
fontcolor.labels = "#000000", inflate.labels = F, overlap.labels = 0.5,
fontfamily.title = "Arial", fontfamily.legend = "Arial",
fontfamily.labels = "Arial",
palette = c("#E64B35FF","#4DBBD5FF","#00A087FF","#3C5488FF","#F39B7FFF"),
aspRatio = 6 / 6)
不同颜色表示不同组群 ,不同面积表示数据及占比。
