# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("ggpubr", quietly = TRUE)) {
install.packages("ggpubr")
}
if (!requireNamespace("ggthemes", quietly = TRUE)) {
install.packages("ggthemes")
}
# 加载包
library(data.table)
library(jsonlite)
library(ggpubr)
library(ggthemes)小提琴图
注记
Hiplot 网站
本页面为 Hiplot Violin 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
小提琴图,因形似小提琴而得名,是结合了箱形图和核密度图,用于显示数据分布及概率密度的统计图表。
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;ggpubr;ggthemes
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-28
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
ggpubr * 0.6.2 2025-10-17 [1] RSPM
ggthemes * 5.2.0 2025-11-30 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
载入数据为数据集 (不同肿瘤中基因名称及表达水平)。
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/violin/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# 整理数据格式
groups <- unique(data[, 2])
ngroups <- length(groups)
comb <- combn(1:ngroups, 2)
my_comparisons <- list()
for (i in seq_len(ncol(comb))) {
my_comparisons[[i]] <- groups[comb[, i]]
}
# 查看数据
head(data) Expresssion Tumor
1 12.10228 AML
2 12.61382 AML
3 12.52741 AML
4 12.67990 AML
5 12.64837 AML
6 12.12146 AML
可视化
# 小提琴图
p <- ggviolin(data, x = "Tumor", y = "Expresssion", fill = "Tumor", add = "boxplot",
xlab = "Tumor", ylab = "Expresssion",
add.params = list(fill = "white"),
palette = c("#e04d39","#5bbad6","#1e9f86"),
title = "Violin Plot", alpha = 1) +
stat_compare_means(comparisons = my_comparisons, label = "p.signif") +
theme_stata() +
theme(text = element_text(family = "Arial"),
plot.title = element_text(size = 12,hjust = 0.5),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
axis.text.x = element_text(angle = 0, hjust = 0.5,vjust = 1),
legend.position = "right",
legend.direction = "vertical",
legend.title = element_text(size = 10),
legend.text = element_text(size = 10))
p
小提琴图可以反映数据分布,同箱形图类似,方框中黑色横线显示各肿瘤中基因表达水平的中位数, 白色方框中上下框边代表数据集中的上,下四分位点;小提琴图还可以反映数据密度,数据集数据越集中则图形越胖。图示中BLGG 组中的基因表达分布更集中,BIC 组次之,AML组则分布最分散。
