# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("clusterProfiler", quietly = TRUE)) {
BiocManager::install("clusterProfiler")
}
# 加载包
library(data.table)
library(jsonlite)
library(clusterProfiler)自定义基因富集分析
注记
Hiplot 网站
本页面为 Hiplot DIY GSEA 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
自定义基因集。
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;clusterProfiler
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-28
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
clusterProfiler * 4.18.4 2025-12-15 [1] Bioconduc~
data.table * 1.18.0 2025-12-24 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
# 加载数据
data1 <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/diy-gsea/data.json")$exampleData$textarea[[1]])
data1 <- as.data.frame(data1)
data2 <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/diy-gsea/data.json")$exampleData$textarea[[2]])
data2 <- as.data.frame(data2)
# 整理数据格式
data1[,2] <- as.numeric(data1[,2])
geneList <- data1[,2]
names(geneList) <- data1[,1]
geneList <- sort(geneList, decreasing = TRUE)
term <- data.frame(term=data2[,1], gene=data2[,2])
# 查看数据
head(term) term gene
1 GO_ADAPTIVE_IMMUNE_RESPONSE ADAM17
2 GO_ADAPTIVE_IMMUNE_RESPONSE AICDA
3 GO_ADAPTIVE_IMMUNE_RESPONSE ALCAM
4 GO_ADAPTIVE_IMMUNE_RESPONSE ANXA1
5 GO_ADAPTIVE_IMMUNE_RESPONSE BATF
6 GO_ADAPTIVE_IMMUNE_RESPONSE BCL10
可视化
# 自定义基因富集分析
y <- clusterProfiler::GSEA(geneList, TERM2GENE = term, pvalueCutoff = 1)
p <- gseaplot(
y,
y@result$Description[1],
color = "#000000",
by = "runningScore",
color.line = "#4CAF50",
color.vline= "#FA5860",
title = "DIY GSEA Plot",
)
p
