# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("ggcharts", quietly = TRUE)) {
install.packages("ggcharts")
}
# 加载包
library(data.table)
library(jsonlite)
library(ggcharts)双侧标准化图
注记
Hiplot 网站
本页面为 Hiplot Diverging Scale 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
双侧标准化图是一种将连续的,定量的输入映射到连续的固定的插值器上的图形。
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;ggcharts
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-28
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
ggcharts * 0.2.1 2020-05-20 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
导入数据第一列为模型名称列表,其余列输入相关指标及对应数值。
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/diverging-scale/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# 整理数据格式
data <- dplyr::transmute(.data = data, x = model, y = scale(hp))
# 查看数据
head(data) x y
1 Mazda RX4 -0.6130929
2 Mazda RX4 Wag -0.6130929
3 Datsun 710 -0.9123057
4 Hornet 4 Drive -0.6130929
5 Hornet Sportabout 0.5309561
6 Valiant -0.7010967
可视化
1.条形图
# 双侧条形图
fill_colors <- c("#C20B01", "#196ABD")
fill_colors <- fill_colors[c(any(data[, "y"] > 0), any(data[, "y"] < 0))]
p <- diverging_bar_chart(data = data, x = x, y = y, bar_colors = fill_colors,
text_color = '#000000') +
theme(axis.text.x = element_text(color = "#000000"),
axis.title.x = element_text(colour = "#000000"),
axis.title.y = element_text(colour = "#000000"),
plot.background = element_blank()) +
labs(x = "model", y = "scale(hp)", title = "")
p
图示横轴表示hp数据,纵轴表示模型名称(分类),红色表示超过平均值的模型,蓝色表示低于平均值的模型,数据是按照大小赋值于 2 的比例尺上面。
2.棒棒糖图
# 双侧棒棒糖图
fill_colors <- c("#C20B01", "#196ABD")
fill_colors <- fill_colors[c(any(data[, "y"] > 0), any(data[, "y"] < 0))]
p <- diverging_lollipop_chart(
data = data, x = x, y = y, lollipop_colors = fill_colors,
line_size = 0.3, point_size = 1.9, text_color = '#000000') +
theme(axis.text.x = element_text(color = "#000000"),
axis.title.x = element_text(colour = "#000000"),
axis.title.y = element_text(colour = "#000000"),
plot.background = element_blank()) +
labs(x = "model", y = "scale(hp)", title = "")
p
