# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
if (!requireNamespace("dplyr", quietly = TRUE)) {
install.packages("dplyr")
}
if (!requireNamespace("tidyr", quietly = TRUE)) {
install.packages("tidyr")
}
if (!requireNamespace("stringr", quietly = TRUE)) {
install.packages("stringr")
}
# 加载包
library(data.table)
library(jsonlite)
library(ggplot2)
library(dplyr)
library(tidyr)
library(stringr)饼图矩阵
注记
Hiplot 网站
本页面为 Hiplot Pie Matrix 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;ggplot2;dplyr;tidyr;stringr
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-28
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
dplyr * 1.1.4 2023-11-17 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
stringr * 1.6.0 2025-11-04 [1] RSPM
tidyr * 1.3.2 2025-12-19 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/pie-matrix/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# 整理数据格式
data[,"genre"] <- factor(data[,"genre"], levels = unique(data[,"genre"]))
data[,"mpaa"] <- factor(data[,"mpaa"], levels = unique(data[,"mpaa"]))
data[,"status"] <- factor(data[,"status"], levels = unique(data[,"status"]))
col <- c("#E64B35FF","#4DBBD5FF")
df <- matrix(NA, nrow = length(unique(data[,"mpaa"])),
ncol = length(unique(data[,"genre"])))
row.names(df) <- unique(data[,"mpaa"])
colnames(df) <- unique(data[,"genre"])
for (i in 1:nrow(df)) {
for (j in 1:ncol(df)) {
for (k in unique(data[,"status"])) {
if (is.na(df[i, j])) {
df[i, j] <- sum(data[,"genre"] == unique(data[,"genre"])[j] &
data[,"mpaa"] == unique(data[,"mpaa"])[i] &
data[,"status"] == k)
} else {
df[i, j] <- paste0(df[i, j], ",",
sum(data[,"genre"] == unique(data[,"genre"])[j] &
data[,"mpaa"] == unique(data[,"mpaa"])[i] &
data[,"status"] == k))
}
}
}
}
df <- as.matrix(df)
# 查看数据
head(data[,1:5]) title year length budget rating
1 Shawshank Redemption, The 1994 142 25 9.1
2 Lord of the Rings: The Return of the King, The 2003 251 94 9.0
3 Lord of the Rings: The Fellowship of the Ring, The 2001 208 93 8.8
4 Lord of the Rings: The Two Towers, The 2002 223 94 8.8
5 Pulp Fiction 1994 168 8 8.8
6 Schindler's List 1993 195 25 8.8
可视化
# 饼图矩阵
p <- df %>% as.table() %>%
as.data.frame() %>%
mutate(Freq = str_split(Freq,",")) %>%
unnest(Freq) %>%
mutate(Freq = as.integer(Freq)) %>%
# 将值转换为百分比(每个图表加起来为 1)
group_by(Var1, Var2) %>%
mutate(Freq = ifelse(is.na(Freq), NA, Freq / sum(Freq)),
color = row_number()) %>%
ungroup() %>%
# Plot
ggplot(aes("", Freq, fill=factor(color, labels = unique(data[,"status"])))) +
geom_bar(width = 2, stat = "identity") +
coord_polar("y") +
facet_wrap(~Var1+Var2, ncol = ncol(df)) +
scale_fill_manual(values = col) +
theme_void() +
theme(axis.text = element_blank(), axis.ticks = element_blank(),
panel.grid = element_blank(), axis.title = element_blank(),
legend.position = "bottom", legend.direction = "horizontal") +
guides(fill = guide_legend(nrow = 1, title = "status"))
p
