# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("FunnelPlotR", quietly = TRUE)) {
install.packages("FunnelPlotR")
}
if (!requireNamespace("gridExtra", quietly = TRUE)) {
install.packages("gridExtra")
}
# 加载包
library(data.table)
library(jsonlite)
library(FunnelPlotR)
library(gridExtra)漏斗图
注记
Hiplot 网站
本页面为 Hiplot Funnel Plot 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
可以用于分析 Meta 分析结果中潜在偏倚因子。
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;FunnelPlotR;gridExtra
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-28
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
FunnelPlotR * 0.6.0 2025-07-23 [1] RSPM
gridExtra * 2.3 2017-09-09 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/funnel-plot/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# 查看数据
head(data) los hmo white died age80 type type1 type2 type3 provnum prds
1 4 0 1 0 0 1 1 0 0 30001 9.667315
2 9 1 1 0 0 1 1 0 0 30001 8.956472
3 3 1 1 1 1 1 1 0 0 30001 6.856678
4 9 0 1 0 0 1 1 0 0 30001 9.667315
5 1 0 1 1 1 1 1 0 0 30001 7.400868
6 4 0 1 1 0 1 1 0 0 30001 7.561051
可视化
# 漏斗图
p <- funnel_plot(
data, numerator = los, denominator = prds, group = provnum, data_type = "SR",
limit = 99, label = "outlier", sr_method = "SHMI", trim_by=0.1,
title = "Funnel Plot", x_range = "auto", y_range = "auto"
)
pA funnel plot object with 54 points of which 9 are outliers.
Plot is adjusted for overdispersion.
