# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
# 加载包
library(data.table)
library(jsonlite)
library(ggplot2)帕累托图
注记
Hiplot 网站
本页面为 Hiplot Pareto Chart 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;ggplot2
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-28
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
案例数据为某商品在多个平台的销量数据,插件会为销量数据自动降序排列绘制条形图,同时计算累积销量绘制累积折线图。
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/pareto-chart/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# 整理数据格式
data <- data[order(-data[["sales"]]), ]
data[["channel"]] <- factor(data[["channel"]], levels = data[["channel"]])
## 计算百分比
data$accumulating <- cumsum(data[["sales"]])
max_y <- max(data[["sales"]])
cal_num <- sum(data[["sales"]]) / max_y
data$accumulating <- data$accumulating / cal_num
# 查看数据
head(data) channel sales accumulating
2 JD 500 132.9787
5 Tmall 400 239.3617
4 Pinduoduo 300 319.1489
3 Amazon 230 380.3191
6 Shopee 200 433.5106
1 TaoBao 100 460.1064
可视化
# 帕累托图
p <- ggplot(data, aes(x = channel, y = sales, fill = channel)) +
geom_bar(stat = "identity") +
geom_line(aes(y = accumulating), group = 1) +
geom_point(aes(y = accumulating), show.legend = FALSE) +
scale_y_continuous(sec.axis = sec_axis(trans = ~ . / max_y * 100, name = "Percentage")) +
scale_fill_manual(values = c("#E64B35FF","#4DBBD5FF","#00A087FF","#3C5488FF",
"#F39B7FFF","#8491B4FF","#91D1C2FF","#DC0000FF")) +
theme_bw()
p
