# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
if (!requireNamespace("ggthemes", quietly = TRUE)) {
install.packages("ggthemes")
}
# 加载包
library(data.table)
library(jsonlite)
library(ggplot2)
library(ggthemes)丝带图
注记
Hiplot 网站
本页面为 Hiplot Ribbon 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
丝带图是一种类似丝带的图形。
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;ggplot2;ggthemes
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-18
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
ggthemes * 5.2.0 2025-11-30 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
载入数据为 x 轴数值及其对应的两个 y 轴数值和分组。
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/ribbon/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# 整理数据格式
colnames(data) <- c("group", "xvalue", "yvalue1", "yvalue2")
data$yvalue <- (data$yvalue1 + data$yvalue2) / 2
# 查看数据
head(data) group xvalue yvalue1 yvalue2 yvalue
1 Group1 1900 -0.279 -0.063 -0.171
2 Group1 1901 -0.271 -0.053 -0.162
3 Group1 1902 -0.285 -0.069 -0.177
4 Group1 1903 -0.303 -0.095 -0.199
5 Group1 1904 -0.328 -0.118 -0.223
6 Group1 1905 -0.348 -0.134 -0.241
可视化
# 丝带图
p <- ggplot(data, aes(xvalue, yvalue, fill = group)) +
geom_ribbon(alpha = 0.2, aes(ymin = yvalue1, ymax = yvalue2)) +
geom_line(aes(y = yvalue, color = group), lwd = 1) +
geom_line(aes(y = yvalue1, color = group), linetype = "dotted") +
geom_line(aes(y = yvalue2, color = group), linetype = "dotted") +
ylab("y axis value") +
xlab("x axis value") +
ggtitle("Ribbon Plot") +
scale_fill_manual(values = c("#e04d39","#5bbad6")) +
scale_color_manual(values = c("#e04d39","#5bbad6")) +
theme_stata() +
theme(text = element_text(family = "Arial"),
plot.title = element_text(size = 12,hjust = 0.5),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
axis.text.x = element_text(angle = 0, hjust = 0.5,vjust = 1),
legend.position = "right",
legend.direction = "vertical",
legend.title = element_text(size = 10),
legend.text = element_text(size = 10))
p
每种颜色表示不同的分组,可以透过其中折线,观测每组数据随时间的变化。
