# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("GOplot", quietly = TRUE)) {
install.packages("GOplot")
}
if (!requireNamespace("ggplotify", quietly = TRUE)) {
install.packages("ggplotify")
}
# 加载包
library(data.table)
library(jsonlite)
library(GOplot)
library(ggplotify)GO气泡图
注记
Hiplot 网站
本页面为 Hiplot GOBubble Plot 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
GO气泡图用于显示按z-score或adjusted p-value的负相对序列的Z-score彩色气泡图。
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;GOplot;ggplotify
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-27
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
ggdendro * 0.2.0 2024-02-23 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
ggplotify * 0.1.3 2025-09-20 [1] RSPM
GOplot * 1.0.2 2016-03-30 [1] RSPM
gridExtra * 2.3 2017-09-09 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
RColorBrewer * 1.1-3 2022-04-03 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
加载的数据是具有七个列的GO富集的结果:category, GO id, GO term, gene count, gene name, logFC, adjust pvalue and zscore。
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/gobubble/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# 整理数据格式
colnames(data) <- c("category","ID","term","count","genes","logFC","adj_pval","zscore")
data <- data[data$category %in% c("BP","CC","MF"),]
data <- data[!is.na(data$adj_pval),]
data$adj_pval <- as.numeric(data$adj_pval)
data$zscore <- as.numeric(data$zscore)
# 查看数据
head(data) category ID term count genes logFC adj_pval
1 BP GO:0007507 heart development 54 DLC1 -0.9707875 2.17e-06
2 BP GO:0007507 heart development 54 NRP2 -1.5153173 2.17e-06
3 BP GO:0007507 heart development 54 NRP1 -1.1412315 2.17e-06
4 BP GO:0007507 heart development 54 EDN1 1.3813006 2.17e-06
5 BP GO:0007507 heart development 54 PDLIM3 -0.8876939 2.17e-06
6 BP GO:0007507 heart development 54 GJA1 -0.8179480 2.17e-06
zscore
1 -0.8164966
2 -0.8164966
3 -0.8164966
4 -0.8164966
5 -0.8164966
6 -0.8164966
可视化
# GO气泡图
p <- function () {
GOBubble(data, display = "single", title = "GO Enrichment Bubbleplot",
colour = c("#FC8D59","#FFFFBF","#99D594"),
labels = 0, ID = T, table.legend = T, table.col = T, bg.col = F) +
theme(plot.title = element_text(hjust = 0.5))
}
p <- as.ggplot(p)
p
如示例图所示,图的x轴表示z-score。y轴上显示了 adjusted p-value 的负对数(对应于该 term 的重要性)。绘制圆圈的面积与分配给该 term 的基因数量成正比。每个圆都根据其类别进行着色,并用 ID 或 term 名称标记。
