# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
if (!requireNamespace("dplyr", quietly = TRUE)) {
install.packages("dplyr")
}
if (!requireNamespace("tidyr", quietly = TRUE)) {
install.packages("tidyr")
}
if (!requireNamespace("scales", quietly = TRUE)) {
install.packages("scales")
}
# 加载包
library(data.table)
library(jsonlite)
library(ggplot2)
library(dplyr)
library(tidyr)
library(scales)百分比堆叠条形图
注记
Hiplot 网站
本页面为 Hiplot Percentsge Stacked Bar Chart 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
https://hiplot.cn/basic/stacked-percentage-bar-chart?lang=zh_cn
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;ggplot2;dplyr;tidyr;scales
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-28
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
dplyr * 1.1.4 2023-11-17 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
scales * 1.4.0 2025-04-24 [1] RSPM
tidyr * 1.3.2 2025-12-19 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
案例数据为某商场中三种商品在一星期内的销量,销量数据会被自动计算为百分比的形式进行绘图。
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/stacked-percentage-bar-chart/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# 整理数据格式
data$total <- rowSums(data[, -1])
data_long <- gather(data, kinds, value, -days, -total)
data_long <- data_long %>%
group_by(days) %>%
mutate(percent = value / total * 100)
data_long[["days"]] <- factor(data_long[["days"]], levels = data[["days"]])
# 查看数据
head(data) days goods1 goods2 goods3 total
1 Monday 150 300 0 450
2 Tuesday 200 250 0 450
3 Wednesday 300 100 0 400
4 Thursday 200 300 0 500
5 Friday 100 300 0 400
6 Saturday 50 50 400 500
可视化
# 百分比堆叠条形图
p <- ggplot(data_long, aes(x = percent, y = days, fill = kinds)) +
geom_bar(stat = "identity", position = "stack") +
geom_text(aes(label = ifelse(percent != 0, paste0(round(percent), "%"), "")),
position = position_stack(vjust = 0.5)) +
labs(title = "Percentage Stacked Bar Chart", x = "Percentage", y = "Days") +
scale_x_continuous(labels = percent_format(scale = 1)) +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5)) +
scale_fill_manual(values = c("#E64B35FF","#4DBBD5FF","#00A087FF"))
p
