# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}if (!requireNamespace("NeuralNetTools", quietly = TRUE)) {
install.packages("NeuralNetTools")
}if (!requireNamespace("nnet", quietly = TRUE)) {
install.packages("nnet")
}
# 加载包
library(data.table)
library(jsonlite)
library(NeuralNetTools)
library(nnet)
神经网络
注记
Hiplot 网站
本页面为 Hiplot Neural Network
插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table
;jsonlite
;NeuralNetTools
;nnet
数据准备
# 加载数据
<- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/neural-network/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
data
# 查看数据
head(data)
Y1 Y2 X1 X2 X3
1 0.7646258 0.5494452 -0.89691455 -1.8923489 0.6408445
2 0.2383994 0.4605024 0.18484918 1.2928042 -1.6013778
3 0.3800247 0.2527468 1.58784533 -0.6182543 -0.7778154
4 0.3545279 0.6319730 -1.13037567 1.0409383 -1.6473925
5 0.3667356 0.4684437 -0.08025176 1.1758795 0.1542662
6 0.5509560 0.4439474 0.13242028 -1.5018321 -1.1756313
可视化
# 神经网络
<- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 10,
mod maxint = 100, decay = 0)
# weights: 51
initial value 78.500691
iter 10 value 0.337066
iter 20 value 0.192314
iter 30 value 0.152626
iter 40 value 0.141174
iter 50 value 0.135013
iter 60 value 0.078199
iter 70 value 0.043228
iter 80 value 0.031472
iter 90 value 0.023796
iter 100 value 0.019665
final value 0.019665
stopped after 100 iterations
# plot
par(mar = numeric(4))
plotnet(mod)
