# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}if (!requireNamespace("NeuralNetTools", quietly = TRUE)) {
install.packages("NeuralNetTools")
}if (!requireNamespace("nnet", quietly = TRUE)) {
install.packages("nnet")
}
# 加载包
library(data.table)
library(jsonlite)
library(NeuralNetTools)
library(nnet)
神经网络
注记
Hiplot 网站
本页面为 Hiplot Neural Network
插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table
;jsonlite
;NeuralNetTools
;nnet
数据准备
# 加载数据
<- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/neural-network/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
data
# 查看数据
head(data)
Y1 Y2 X1 X2 X3
1 0.7646258 0.5494452 -0.89691455 -1.8923489 0.6408445
2 0.2383994 0.4605024 0.18484918 1.2928042 -1.6013778
3 0.3800247 0.2527468 1.58784533 -0.6182543 -0.7778154
4 0.3545279 0.6319730 -1.13037567 1.0409383 -1.6473925
5 0.3667356 0.4684437 -0.08025176 1.1758795 0.1542662
6 0.5509560 0.4439474 0.13242028 -1.5018321 -1.1756313
可视化
# 神经网络
<- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 10,
mod maxint = 100, decay = 0)
# weights: 51
initial value 19.044098
iter 10 value 0.263627
iter 20 value 0.185842
iter 30 value 0.151438
iter 40 value 0.139204
iter 50 value 0.131595
iter 60 value 0.125574
iter 70 value 0.096450
iter 80 value 0.027228
iter 90 value 0.014154
iter 100 value 0.009485
final value 0.009485
stopped after 100 iterations
# plot
par(mar = numeric(4))
plotnet(mod)
