# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("NeuralNetTools", quietly = TRUE)) {
install.packages("NeuralNetTools")
}
if (!requireNamespace("nnet", quietly = TRUE)) {
install.packages("nnet")
}
# 加载包
library(data.table)
library(jsonlite)
library(NeuralNetTools)
library(nnet)神经网络
注记
Hiplot 网站
本页面为 Hiplot Neural Network 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;NeuralNetTools;nnet
数据准备
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/neural-network/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# 查看数据
head(data) Y1 Y2 X1 X2 X3
1 0.7646258 0.5494452 -0.89691455 -1.8923489 0.6408445
2 0.2383994 0.4605024 0.18484918 1.2928042 -1.6013778
3 0.3800247 0.2527468 1.58784533 -0.6182543 -0.7778154
4 0.3545279 0.6319730 -1.13037567 1.0409383 -1.6473925
5 0.3667356 0.4684437 -0.08025176 1.1758795 0.1542662
6 0.5509560 0.4439474 0.13242028 -1.5018321 -1.1756313
可视化
# 神经网络
mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 10,
maxint = 100, decay = 0)# weights: 51
initial value 96.579612
iter 10 value 0.451424
iter 20 value 0.181908
iter 30 value 0.071208
iter 40 value 0.040199
iter 50 value 0.030245
iter 60 value 0.023113
iter 70 value 0.018193
iter 80 value 0.013985
iter 90 value 0.012176
iter 100 value 0.009360
final value 0.009360
stopped after 100 iterations
# plot
par(mar = numeric(4))
plotnet(mod)
