# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("ggdist", quietly = TRUE)) {
install.packages("ggdist")
}
if (!requireNamespace("tidyr", quietly = TRUE)) {
install.packages("tidyr")
}
if (!requireNamespace("broom", quietly = TRUE)) {
install.packages("broom")
}
if (!requireNamespace("modelr", quietly = TRUE)) {
install.packages("modelr")
}
if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
# 加载包
library(data.table)
library(jsonlite)
library(ggdist)
library(tidyr)
library(broom)
library(modelr)
library(ggplot2)分布图
注记
Hiplot 网站
本页面为 Hiplot Dist Plot 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
分布图是一种采用置信分布的可视化图形。
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;ggdist;tidyr;broom;modelr;ggplot2
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-27
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
broom * 1.0.11 2025-12-04 [1] RSPM
data.table * 1.18.0 2025-12-24 [1] RSPM
ggdist * 3.3.3 2025-04-23 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
modelr * 0.1.11 2023-03-22 [1] RSPM
tidyr * 1.3.2 2025-12-19 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
载入数据为 5 种条件及其对应的值。
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/ggdist/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# 整理数据格式
data[, 1] <- factor(data[, 1], levels = rev(unique(data[, 1])))
data <- tibble(data)
data2 = lm(response ~ condition, data = data)
data3 <- data_grid(data, condition) %>%
augment(data2, newdata = ., se_fit = TRUE)
# 查看数据
head(data)# A tibble: 6 × 2
condition response
<fct> <dbl>
1 A -0.420
2 B 1.69
3 C 1.37
4 D 1.04
5 E -0.144
6 A -0.301
可视化
# 分布图
p <- ggplot(data3, aes_(y = as.name(colnames(data[1])))) +
stat_dist_halfeye(aes(dist = "student_t", arg1 = df.residual(data2),
arg2 = .fitted, arg3 = .se.fit),
scale = .5) +
geom_point(aes_(x = as.name(colnames(data[2]))),
data = data, pch = "|", size = 2,
position = position_nudge(y = -.15)) +
ggtitle("ggdist Plot") +
xlab("response") + ylab("condition") +
theme_ggdist() +
theme(text = element_text(family = "Arial"),
plot.title = element_text(size = 12,hjust = 0.5),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
axis.text.x = element_text(angle = 0, hjust = 0.5,vjust = 1),
legend.position = "right",
legend.direction = "vertical",
legend.title = element_text(size = 10),
legend.text = element_text(size = 10))
p
图示给出的是条件下均值的置信度分布,可以看出 5 种条件下对应值的大致分布情况。
