# 安装包
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
if (!requireNamespace("grafify", quietly = TRUE)) {
install.packages("grafify")
}
if (!requireNamespace("ggpubr", quietly = TRUE)) {
install.packages("ggpubr")
}
# 加载包
library(data.table)
library(jsonlite)
library(ggplot2)
library(grafify)
library(ggpubr)误差线柱状图2
注记
Hiplot 网站
本页面为 Hiplot Barplot (errorbar2) 插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
带误差线和误差组的条形图。
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
data.table;jsonlite;ggplot2;grafify;ggpubr
sessioninfo::session_info("attached")─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-28
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
ggpubr * 0.6.2 2025-10-17 [1] RSPM
grafify * 5.1.0 2025-08-25 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ── Packages attached to the search path.
──────────────────────────────────────────────────────────────────────────────
数据准备
数据表:
第一列: (数值) Y 轴值。
第二列: (数值或字符串) X 轴类别。
# 加载数据
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/barplot-errorbar2/data.json")$exampleData[[1]]$textarea[[1]])
data <- as.data.frame(data)
# 整理数据格式
data[, 2] <- factor(data[, 2], levels = unique(data[, 2]))
# 查看数据
head(data) score class
1 60 math
2 62 math
3 70 chinese
4 73 chinese
5 80 english
6 85 english
可视化
# 误差线柱状图2
p <- plot_scatterbar_sd(
data, ycol = get(colnames(data)[1]), xcol = get(colnames(data)[2]),
b_alpha = 1, ewid = 0.2, jitter = 0.1) +
stat_compare_means(data = data, aes(data[, 2], data[, 1], fill = data[, 2]),
label = "p.format", ref.group = ".all.", vjust = -2,
method = "t.test") +
guides(fill=guide_legend(title=colnames(data)[2])) +
scale_y_continuous(expand = expansion(mult = c(0, 0.2))) +
labs(x="class", y="score") +
scale_fill_manual(values = c("#E64B35FF","#4DBBD5FF","#00A087FF","#3C5488FF")) +
theme_classic2() +
theme(text = element_text(family = "Arial"),
plot.title = element_text(size = 12,hjust = 0.5),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
axis.text.x = element_text(angle = 0, hjust = 0.5, vjust = 1),
legend.position = "right",
legend.direction = "vertical",
legend.title = element_text(size = 10),
legend.text = element_text(size = 10))
p
