# Install packages
if (!requireNamespace("ggdist", quietly = TRUE)) {
install.packages("ggdist")
}if (!requireNamespace("tidyr", quietly = TRUE)) {
install.packages("tidyr")
}if (!requireNamespace("broom", quietly = TRUE)) {
install.packages("broom")
}if (!requireNamespace("modelr", quietly = TRUE)) {
install.packages("modelr")
}if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
# Load packages
library(ggdist)
library(tidyr)
library(broom)
library(modelr)
library(ggplot2)
Dist Plot
The dist plot is a visual diagram using a confidence distribution.
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
ggdist
;tidyr
;broom
;modelr
;ggplot2
Data Preparation
The loaded data are five conditions and their corresponding values.
# Load data
<- read.delim("files/Hiplot/066-ggdist-data.txt", header = T)
data
# Convert data structure
1] <- factor(data[, 1], levels = rev(unique(data[, 1])))
data[, <- tibble(data)
data = lm(response ~ condition, data = data)
data2 <- data_grid(data, condition) %>%
data3 augment(data2, newdata = ., se_fit = TRUE)
# View data
head(data)
# A tibble: 6 Γ 2
condition response
<fct> <dbl>
1 A -0.420
2 B 1.69
3 C 1.37
4 D 1.04
5 E -0.144
6 A -0.301
Visualization
# Dist Plot
<- ggplot(data3, aes_(y = as.name(colnames(data[1])))) +
p stat_dist_halfeye(aes(dist = "student_t", arg1 = df.residual(data2),
arg2 = .fitted, arg3 = .se.fit),
scale = .5) +
geom_point(aes_(x = as.name(colnames(data[2]))),
data = data, pch = "|", size = 2,
position = position_nudge(y = -.15)) +
ggtitle("ggdist Plot") +
xlab("response") + ylab("condition") +
theme_ggdist() +
theme(text = element_text(family = "Arial"),
plot.title = element_text(size = 12,hjust = 0.5),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
axis.text.x = element_text(angle = 0, hjust = 0.5,vjust = 1),
legend.position = "right",
legend.direction = "vertical",
legend.title = element_text(size = 10),
legend.text = element_text(size = 10))
p

The diagram shows the confidence distribution of the mean under the conditions, and the approximate distribution of the corresponding values under the five conditions can be seen.