# Install packages
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("ggcharts", quietly = TRUE)) {
install.packages("ggcharts")
}
# Load packages
library(data.table)
library(jsonlite)
library(ggcharts)Diverging Scale
Hiplot website
This page is the tutorial for source code version of the Hiplot Diverging Scale plugin. You can also use the Hiplot website to achieve no code ploting. For more information please see the following link:
The diverging scale is a graph that maps a continuous, quantitative input to a continuous fixed interpolator.
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
data.table;jsonlite;ggcharts
sessioninfo::session_info("attached")β Session info βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-17
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
β Packages βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
ggcharts * 0.2.1 2020-05-20 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ββ Packages attached to the search path.
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Data Preparation
The first column is a list of model names, and the remaining columns enter the relevant indicators and corresponding values.
# Load data
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/diverging-scale/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# convert data structure
data <- dplyr::transmute(.data = data, x = model, y = scale(hp))
# View data
head(data) x y
1 Mazda RX4 -0.6130929
2 Mazda RX4 Wag -0.6130929
3 Datsun 710 -0.9123057
4 Hornet 4 Drive -0.6130929
5 Hornet Sportabout 0.5309561
6 Valiant -0.7010967
Visualization
1.Barplot
# Diverging Scale Barplot
fill_colors <- c("#C20B01", "#196ABD")
fill_colors <- fill_colors[c(any(data[, "y"] > 0), any(data[, "y"] < 0))]
p <- diverging_bar_chart(data = data, x = x, y = y, bar_colors = fill_colors,
text_color = '#000000') +
theme(axis.text.x = element_text(color = "#000000"),
axis.title.x = element_text(colour = "#000000"),
axis.title.y = element_text(colour = "#000000"),
plot.background = element_blank()) +
labs(x = "model", y = "scale(hp)", title = "")
p
Hp data is shown on the horizontal axis, model names (classification) are shown on the vertical axis, models above average are shown in red, and models below average are shown in blue. Data is assigned on a scale of 2 by size.
2.Lollipop Plot
# Diverging Scale Lollipop Plot
fill_colors <- c("#C20B01", "#196ABD")
fill_colors <- fill_colors[c(any(data[, "y"] > 0), any(data[, "y"] < 0))]
p <- diverging_lollipop_chart(
data = data, x = x, y = y, lollipop_colors = fill_colors,
line_size = 0.3, point_size = 1.9, text_color = '#000000') +
theme(axis.text.x = element_text(color = "#000000"),
axis.title.x = element_text(colour = "#000000"),
axis.title.y = element_text(colour = "#000000"),
plot.background = element_blank()) +
labs(x = "model", y = "scale(hp)", title = "")
p
