# Install packages
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}if (!requireNamespace("NeuralNetTools", quietly = TRUE)) {
install.packages("NeuralNetTools")
}if (!requireNamespace("nnet", quietly = TRUE)) {
install.packages("nnet")
}
# Load packages
library(data.table)
library(jsonlite)
library(NeuralNetTools)
library(nnet)
Neural Network
Note
Hiplot website
This page is the tutorial for source code version of the Hiplot Neural Network
plugin. You can also use the Hiplot website to achieve no code ploting. For more information please see the following link:
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
data.table
;jsonlite
;NeuralNetTools
;nnet
Data Preparation
# Load data
<- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/neural-network/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
data
# View data
head(data)
Y1 Y2 X1 X2 X3
1 0.7646258 0.5494452 -0.89691455 -1.8923489 0.6408445
2 0.2383994 0.4605024 0.18484918 1.2928042 -1.6013778
3 0.3800247 0.2527468 1.58784533 -0.6182543 -0.7778154
4 0.3545279 0.6319730 -1.13037567 1.0409383 -1.6473925
5 0.3667356 0.4684437 -0.08025176 1.1758795 0.1542662
6 0.5509560 0.4439474 0.13242028 -1.5018321 -1.1756313
Visualization
# Neural Network
<- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 10,
mod maxint = 100, decay = 0)
# weights: 51
initial value 55.373261
iter 10 value 0.630553
iter 20 value 0.134457
iter 30 value 0.056240
iter 40 value 0.038061
iter 50 value 0.023642
iter 60 value 0.015999
iter 70 value 0.012626
iter 80 value 0.009267
iter 90 value 0.006589
iter 100 value 0.005000
final value 0.005000
stopped after 100 iterations
# plot
par(mar = numeric(4))
plotnet(mod)
