# Install packages
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}if (!requireNamespace("NeuralNetTools", quietly = TRUE)) {
install.packages("NeuralNetTools")
}if (!requireNamespace("nnet", quietly = TRUE)) {
install.packages("nnet")
}
# Load packages
library(data.table)
library(jsonlite)
library(NeuralNetTools)
library(nnet)
Neural Network
Note
Hiplot website
This page is the tutorial for source code version of the Hiplot Neural Network
plugin. You can also use the Hiplot website to achieve no code ploting. For more information please see the following link:
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
data.table
;jsonlite
;NeuralNetTools
;nnet
Data Preparation
# Load data
<- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/neural-network/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
data
# View data
head(data)
Y1 Y2 X1 X2 X3
1 0.7646258 0.5494452 -0.89691455 -1.8923489 0.6408445
2 0.2383994 0.4605024 0.18484918 1.2928042 -1.6013778
3 0.3800247 0.2527468 1.58784533 -0.6182543 -0.7778154
4 0.3545279 0.6319730 -1.13037567 1.0409383 -1.6473925
5 0.3667356 0.4684437 -0.08025176 1.1758795 0.1542662
6 0.5509560 0.4439474 0.13242028 -1.5018321 -1.1756313
Visualization
# Neural Network
<- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 10,
mod maxint = 100, decay = 0)
# weights: 51
initial value 51.734929
iter 10 value 0.348658
iter 20 value 0.201810
iter 30 value 0.163725
iter 40 value 0.145314
iter 50 value 0.136997
iter 60 value 0.100574
iter 70 value 0.037930
iter 80 value 0.026816
iter 90 value 0.023362
iter 100 value 0.022483
final value 0.022483
stopped after 100 iterations
# plot
par(mar = numeric(4))
plotnet(mod)
