# Install packages
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}if (!requireNamespace("NeuralNetTools", quietly = TRUE)) {
install.packages("NeuralNetTools")
}if (!requireNamespace("nnet", quietly = TRUE)) {
install.packages("nnet")
}
# Load packages
library(data.table)
library(jsonlite)
library(NeuralNetTools)
library(nnet)
Neural Network
Note
Hiplot website
This page is the tutorial for source code version of the Hiplot Neural Network
plugin. You can also use the Hiplot website to achieve no code ploting. For more information please see the following link:
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
data.table
;jsonlite
;NeuralNetTools
;nnet
Data Preparation
# Load data
<- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/neural-network/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
data
# View data
head(data)
Y1 Y2 X1 X2 X3
1 0.7646258 0.5494452 -0.89691455 -1.8923489 0.6408445
2 0.2383994 0.4605024 0.18484918 1.2928042 -1.6013778
3 0.3800247 0.2527468 1.58784533 -0.6182543 -0.7778154
4 0.3545279 0.6319730 -1.13037567 1.0409383 -1.6473925
5 0.3667356 0.4684437 -0.08025176 1.1758795 0.1542662
6 0.5509560 0.4439474 0.13242028 -1.5018321 -1.1756313
Visualization
# Neural Network
<- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 10,
mod maxint = 100, decay = 0)
# weights: 51
initial value 30.651359
iter 10 value 0.299492
iter 20 value 0.172431
iter 30 value 0.098295
iter 40 value 0.037655
iter 50 value 0.020302
iter 60 value 0.009803
iter 70 value 0.005901
iter 80 value 0.004440
iter 90 value 0.003939
iter 100 value 0.003664
final value 0.003664
stopped after 100 iterations
# plot
par(mar = numeric(4))
plotnet(mod)
