# Install packages
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
# Load packages
library(data.table)
library(jsonlite)
library(ggplot2)Custom Heatmap
Note
Hiplot website
This page is the tutorial for source code version of the Hiplot Custom Heatmap plugin. You can also use the Hiplot website to achieve no code ploting. For more information please see the following link:
Custom Heatmap, directly plot a heatmap based on the given data.
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
data.table;jsonlite;ggplot2
sessioninfo::session_info("attached")β Session info βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-17
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
β Packages βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ββ Packages attached to the search path.
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Data Preparation
The case data is a grayscale image of the official logo of hiplot.org.
# Load data
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/custom-heat-map/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# convert data structure
draw_data <- as.matrix(data[, 2:ncol(data)])
row_num <- nrow(draw_data)
col_num <- ncol(draw_data)
col_labels <- colnames(data)
col_labels <- col_labels[2:ncol(data)]
row_labels <- data$name
rm(data)
df <- expand.grid(row = 1:row_num, col = 1:col_num)
df$value <- c(draw_data)
# View data
head(df) row col value
1 1 1 236
2 2 1 236
3 3 1 236
4 4 1 236
5 5 1 236
6 6 1 236
Visualization
# Custom Heatmap
p <- ggplot(df, aes(x = col, y = row, fill = value)) +
geom_point(shape = 21, size = 8, aes(fill = value), color = "white") +
scale_fill_gradient(low = "#DDDDDD", high = "#0000F5") +
guides(fill = guide_colorbar(title = "Value")) +
theme(
panel.background = element_rect(fill = "white"),
panel.grid = element_blank(),
axis.text = element_text(size = 10),
axis.ticks = element_blank(),
axis.title = element_blank()
) +
scale_x_continuous(breaks = 1:col_num, labels = col_labels, position = "top") +
scale_y_reverse(breaks = 1:row_num, labels = row_labels, position = "left")
p
