# Install packages
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("grafify", quietly = TRUE)) {
install.packages("grafify")
}
if (!requireNamespace("dplyr", quietly = TRUE)) {
install.packages("dplyr")
}
# Load packages
library(data.table)
library(jsonlite)
library(grafify)
library(dplyr)Point (SD)
Note
Hiplot website
This page is the tutorial for source code version of the Hiplot Point (SD) plugin. You can also use the Hiplot website to achieve no code ploting. For more information please see the following link:
Displaying the standard deviation (SD) of multi-group data.
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
data.table;jsonlite;grafify;dplyr
sessioninfo::session_info("attached")β Session info βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-17
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
β Packages βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
dplyr * 1.1.4 2023-11-17 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
grafify * 5.1.0 2025-08-25 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ββ Packages attached to the search path.
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Data Preparation
# Load data
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/point-sd/data.json")$exampleData[[1]]$textarea[[1]])
data <- as.data.frame(data)
# Convert data structure
y <- "Doubling_time"
group <- "Student"
data[, group] <- factor(data[, group], levels = unique(data[, group]))
data <- data %>%
mutate(median = median(get(y), na.rm = TRUE),
mean = mean(get(y), na.rm = TRUE))
# View data
head(data) Experiment Student Doubling_time facet median mean
1 Exp1 A 17.36765 F1 20.18114 19.91642
2 Exp1 B 18.04119 F1 20.18114 19.91642
3 Exp1 C 18.70120 F1 20.18114 19.91642
4 Exp1 D 20.06762 F1 20.18114 19.91642
5 Exp1 E 20.19807 F2 20.18114 19.91642
6 Exp1 F 22.11908 F2 20.18114 19.91642
Visualization
# Point (SD)
p <- plot_point_sd(data = data, Student, Doubling_time, symsize = 5,
symthick = 0.5, s_alpha = 1, ewid = 0, symshape = 21,
all_alpha = 0) +
geom_hline(aes(yintercept = median), colour = 'black', linetype = 2,
size = 0.5) +
xlab(group) + ylab(y) +
guides(fill = guide_legend(title = group)) +
ggtitle("Point-SD") +
theme(text = element_text(family = "Arial"),
plot.title = element_text(size = 12,hjust = 0.5),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
axis.text.x = element_text(angle = 0, hjust = 0.5,vjust = 1),
legend.position = "right",
legend.direction = "vertical",
legend.title = element_text(size = 10),
legend.text = element_text(size = 10))
p
