# Install packages
if (!requireNamespace("ggdag", quietly = TRUE)) {
install.packages("ggdag")
}
# Load packages
library(ggdag)Directed Acyclic Graphs
Note
Hiplot website
This page is the tutorial for source code version of the Hiplot Directed Acyclic Graphs plugin. You can also use the Hiplot website to achieve no code ploting. For more information please see the following link:
Visualizing directed acyclic graphs.
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
ggdag
sessioninfo::session_info("attached")β Session info βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-17
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
β Packages βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
package * version date (UTC) lib source
ggdag * 0.2.13 2024-07-22 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ββ Packages attached to the search path.
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Data Preparation
# Load data
tidy_ggdag <- dagify(
y ~ x + z2 + w2 + w1,
x ~ z1 + w1 + w2,
z1 ~ w1 + v,
z2 ~ w2 + v,
w1 ~ ~w2, # bidirected path
exposure = "x",
outcome = "y") %>%
tidy_dagitty()
# View data
head(tidy_ggdag)$data
# A tibble: 13 Γ 8
name x y direction to xend yend circular
<chr> <dbl> <dbl> <fct> <chr> <dbl> <dbl> <lgl>
1 v 1.50 -0.0115 -> z1 0.534 1.01 FALSE
2 v 1.50 -0.0115 -> z2 0.487 -0.999 FALSE
3 w1 -0.292 0.429 -> x -0.899 0.628 FALSE
4 w1 -0.292 0.429 -> y -0.974 -0.525 FALSE
5 w1 -0.292 0.429 -> z1 0.534 1.01 FALSE
6 w1 -0.292 0.429 <-> w2 -0.358 -0.527 FALSE
7 w2 -0.358 -0.527 -> x -0.899 0.628 FALSE
8 w2 -0.358 -0.527 -> y -0.974 -0.525 FALSE
9 w2 -0.358 -0.527 -> z2 0.487 -0.999 FALSE
10 x -0.899 0.628 -> y -0.974 -0.525 FALSE
11 y -0.974 -0.525 <NA> <NA> NA NA FALSE
12 z1 0.534 1.01 -> x -0.899 0.628 FALSE
13 z2 0.487 -0.999 -> y -0.974 -0.525 FALSE
$dag
dag {
v
w1
w2
x [exposure]
y [outcome]
z1
z2
v -> z1
v -> z2
w1 -> x
w1 -> y
w1 -> z1
w1 <-> w2
w2 -> x
w2 -> y
w2 -> z2
x -> y
z1 -> x
z2 -> y
}
Visualization
# Directed Acyclic Graphs
p <- ggdag(tidy_ggdag) +
theme_dag()
p
