# Install packages
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}
if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}
if (!requireNamespace("visdat", quietly = TRUE)) {
install.packages("visdat")
}
if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
if (!requireNamespace("dplyr", quietly = TRUE)) {
install.packages("dplyr")
}
if (!requireNamespace("patchwork", quietly = TRUE)) {
install.packages("patchwork")
}
# Load packages
library(data.table)
library(jsonlite)
library(visdat)
library(ggplot2)
library(dplyr)
library(patchwork)Visdat
Note
Hiplot website
This page is the tutorial for source code version of the Hiplot Visdat plugin. You can also use the Hiplot website to achieve no code ploting. For more information please see the following link:
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
data.table;jsonlite;visdat;ggplot2;dplyr;patchwork
sessioninfo::session_info("attached")β Session info βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
setting value
version R version 4.5.2 (2025-10-31)
os Ubuntu 24.04.3 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
date 2026-01-17
pandoc 3.1.3 @ /usr/bin/ (via rmarkdown)
quarto 1.8.27 @ /usr/local/bin/quarto
β Packages βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
package * version date (UTC) lib source
data.table * 1.18.0 2025-12-24 [1] RSPM
dplyr * 1.1.4 2023-11-17 [1] RSPM
ggplot2 * 4.0.1 2025-11-14 [1] RSPM
jsonlite * 2.0.0 2025-03-27 [1] RSPM
patchwork * 1.3.2 2025-08-25 [1] RSPM
visdat * 0.6.0 2023-02-02 [1] RSPM
[1] /home/runner/work/_temp/Library
[2] /opt/R/4.5.2/lib/R/site-library
[3] /opt/R/4.5.2/lib/R/library
* ββ Packages attached to the search path.
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Data Preparation
# Load data
data <- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/visdat/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
# View data
head(data) RowNames Ozone Solar.R Wind Temp Month Day
1 1 41 190 7.4 67 5 1
2 2 36 118 8.0 72 5 2
3 3 12 149 12.6 74 5 3
4 4 18 313 11.5 62 5 4
5 5 NA NA 14.3 56 5 5
6 6 28 NA 14.9 66 5 6
Visualization
# Visdat
add_palette <- function (p) {
## add color palette
p <- p + scale_fill_manual(values = c("#3B4992FF", "#EE0000FF"))
}
pobj <- list()
pobj[["p1"]] <- add_palette(vis_dat(data)) + ggtitle(':vis_dat')
pobj[["p2"]] <- add_palette(vis_guess(data)) + ggtitle(':vis_guess')
pobj[["p3"]] <- vis_miss(data, cluster = T, sort_miss = T) + ggtitle(':vis_miss')
pobj[["p4"]] <- add_palette(vis_expect(data, ~.x >= 20 )) + ggtitle(':vis_expect')
pobj[["p5"]] <- vis_cor(data) +
scale_fill_gradientn(colours = c("#0571B0", "#92C5DE", "#F4A582", "#CA0020")) +
ggtitle(':vis_cor')
pobj[["p6"]] <- data %>%
select_if(is.numeric) %>%
vis_value() + ggtitle(':vis_value')
pobj[["p6"]] <- pobj[["p6"]] +
scale_fill_gradientn(colours = c("#0571B0","#92C5DE","#F7F7F7","#F4A582",
"#CA0020"))
pstr <- paste0(sprintf("pobj[[%s]]", 1:length(pobj)), collapse = " + ")
p <- eval(parse(text =
sprintf("%s + plot_layout(ncol = 2) +
plot_annotation(tag_levels = 'A')", pstr)))
p
