Dotchart

Authors

[Editor] Hu Zheng;

[Contributors]

Sliding bead chart is a graph of beads sliding on a column. It is the superposition of bar chart and scatter chart.

Setup

  • System Requirements: Cross-platform (Linux/MacOS/Windows)

  • Programming language: R

  • Dependent packages: ggpubr

# Install packages
if (!requireNamespace("ggpubr", quietly = TRUE)) {
  install.packages("ggpubr")
}

# Load packages
library(ggpubr)

Data Preparation

The loaded data are gene names and their corresponding gene expression values and groups.

# Load data
data <- read.delim("files/Hiplot/046-dotchart-data.txt", header = T)

# View data
head(data)
      Name Value  Group
1     BMP2  18.7 Group1
2     XIST  14.3 Group1
3 C19orf38  16.4 Group1
4    PDZD3  17.3 Group1
5   MAPRE2  15.2 Group1
6     IRF4  10.4 Group1

Visualization

# Dotchart
p <- ggdotchart(data, x = "Name", y = "Value", group = "Group", color = "Group",
                rotate = T, sorting = "descending",
                y.text.col = F, add = "segments", dot.size = 2) +
  xlab("Name") +
  ylab("Value") +
  ggtitle("DotChart Plot") +
  scale_color_manual(values = c("#e04d39","#5bbad6","#1e9f86")) +
  theme_classic() +
  theme(text = element_text(family = "Arial"),
        plot.title = element_text(size = 12,hjust = 0.5),
        axis.title = element_text(size = 12),
        axis.text = element_text(size = 10),
        axis.text.x = element_text(angle = 0, hjust = 0.5,vjust = 1),
        legend.position = "right",
        legend.direction = "vertical",
        legend.title = element_text(size = 10),
        legend.text = element_text(size = 10))

p
FigureΒ 1: Dotchart

Each color represents a different grouping, so that the differences in gene expression values can be intuitively understood.