# Install packages
if (!requireNamespace("data.table", quietly = TRUE)) {
install.packages("data.table")
}if (!requireNamespace("jsonlite", quietly = TRUE)) {
install.packages("jsonlite")
}if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}if (!requireNamespace("ggthemes", quietly = TRUE)) {
install.packages("ggthemes")
}
# Load packages
library(data.table)
library(jsonlite)
library(ggplot2)
library(ggthemes)
Density
The kernel density map is a graph used to observe the distribution of continuous variables.
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
data.table
;jsonlite
;ggplot2
;ggthemes
Data Preparation
# Load data
<- data.table::fread(jsonlite::read_json("https://hiplot.cn/ui/basic/density/data.json")$exampleData$textarea[[1]])
data <- as.data.frame(data)
data
# convert data structure
2] <- factor(data[,2], levels = unique(data[,2]))
data[,
# View data
head(data)
Value Group2
1 4.2 treat1
2 11.5 treat1
3 7.3 treat1
4 5.8 treat1
5 6.4 treat1
6 10.0 treat1
Visualization
# Density
"group_add_by_code"] <- "g1"
data[
<- ggplot(data, aes_(as.name(colnames(data[1])))) +
p geom_density(col = "white", alpha = 0.85,
aes_(fill = as.name(colnames(data[2])))) +
ggtitle("") +
scale_fill_manual(values = c("#e04d39","#5bbad6")) +
theme_stata() +
theme(text = element_text(family = "Arial"),
plot.title = element_text(size = 12,hjust = 0.5),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
axis.text.x = element_text(angle = 0, hjust = 0.5,vjust = 1),
legend.position = "right",
legend.direction = "vertical",
legend.title = element_text(size = 10),
legend.text = element_text(size = 10))
p
