Visualize Correlation for Multiple Identifiers
Source:R/vis_identifier.R
vis_identifier_multi_cor.Rd
NOTE: the dataset must be dense matrix in UCSC Xena data hubs.
Usage
vis_identifier_multi_cor(
dataset,
ids,
samples = NULL,
matrix.type = c("full", "upper", "lower"),
type = c("parametric", "nonparametric", "robust", "bayes"),
partial = FALSE,
sig.level = 0.05,
p.adjust.method = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr",
"none"),
color_low = "#E69F00",
color_high = "#009E73",
...
)
Arguments
- dataset
the dataset to obtain identifiers.
- ids
the molecule identifiers.
- samples
default is
NULL
, can be common sample names for two datasets.- matrix.type
Character,
"upper"
(default),"lower"
, or"full"
, display full matrix, lower triangular or upper triangular matrix.- type
A character specifying the type of statistical approach:
"parametric"
"nonparametric"
"robust"
"bayes"
You can specify just the initial letter.
- partial
Can be
TRUE
for partial correlations. For Bayesian partial correlations, "full" instead of pseudo-Bayesian partial correlations (i.e., Bayesian correlation based on frequentist partialization) are returned.- sig.level
Significance level (Default:
0.05
). If the p-value in p-value matrix is bigger thansig.level
, then the corresponding correlation coefficient is regarded as insignificant and flagged as such in the plot.- p.adjust.method
Adjustment method for p-values for multiple comparisons. Possible methods are:
"holm"
(default),"hochberg"
,"hommel"
,"bonferroni"
,"BH"
,"BY"
,"fdr"
,"none"
.- color_low
the color code for lower value mapping.
- color_high
the color code for higher value mapping.
- ...
other parameters passing to ggstatsplot::ggcorrmat.
Examples
if (FALSE) { # \dontrun{
dataset <- "TcgaTargetGtex_rsem_isoform_tpm"
ids <- c("TP53", "KRAS", "PTEN")
vis_identifier_multi_cor(dataset, ids)
} # }